

GBE 🔛

Bats & Birds,

Roosts & Nests

Low to Zero Energy

Developments

Design, Construction & Guidance Publication

GRC

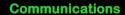
GBC

"Biodiversity for Low and Zero Carbon Buildings"
will do just that
for bat and bird species for which buildings are important
swifts, swallows, house martins, house sparrow, starlings, barn owls and peregrine falcons patrada52cds

© GBE 2009-2024 BatsPads&Zeds

REXFILTRATION

condensation risk cc '09 & EBS '09)


the air is likely to be and condensatio c '09 & EBS '09)

I FAKAGE PATH

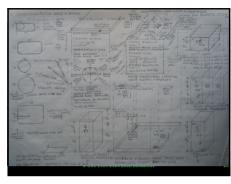
mental Design A

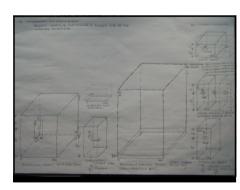
20

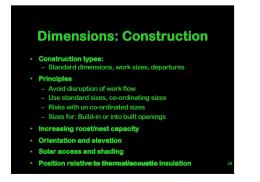
Batties v Architects

- They know what they are talking about
- We know what we are talking about
- But risk we don't get a word of each others
- We read enough to learn new jargon
- We talk Jargon all the time
- To make ourselves sound intelligent or important but alienate and confuse - Jargon Busters needed in both directions
- 15

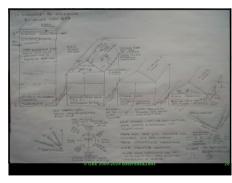
College knowledge Architect know what they know • They leaned it 10, 20, 30, 40 years ago · Architects have a lot to learn about changes in low energy building design • This guide and the jargon buster gives us an opportunity to update them

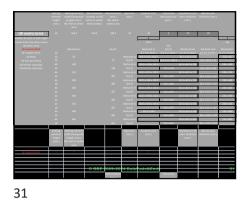

18


Dimensions: Bats & Birds Entrances

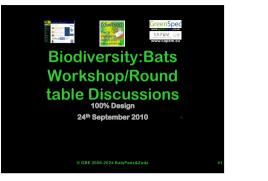

- Entrance: locations, heights
- Flight spaces in and out
- Roost locations
- Roost/box sizes
- Roost arrangement

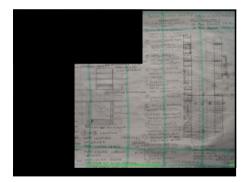
22/11/2024


	Access dimensions	Roost dimensions	Height of entry	Aspect of roost	Temperature 1 C		Materials and other comments
Crevice dwelling bats	15-20 n x 20-50 mm I (ike tiny lefterboxed/)	Any size as long as some components of the area are revisions in the region of 20 – 30 × mm width of Q40. Greater total areas of be useful for areas or be useful for nursary (summer) socials Male roots are smaller numbers of bats or even individual bats.	(k - 1 m (except notbule over 5 m)	Bummer reviewy recels mod sevel for west appect for polar heating Male recels and winter holemation notids on northerly agent.	Summer 30-49 daytime.	0-6	 Rough (Dir grip) Non-travic No fast of entranglement Suitable thermal properties (volucing 24 hr fluctuations)
Bats needing a flying area	15-20 h x 20- 50 l mm.	2.8 h x 5 m x 5 m not trussed. incorporate roost cervices dimensions as above,	Over 2 m	The crevice roosting provision within the roost to be located on the south or west side for solar heating. The flight area not as important.	30-40	0-6	
Horseshoe bats	Lesser horseshoes 300 l x 200 h mm. Greater horseshoes 400 l x 300 h mm.	2.8 h x 5 m x 5 m not trussed to allow flight.	Over 2 m	The roost is most likely going to be in a roof space and this should have an orientation that allows a south-facing solar gain or before still an I-shape to allow temperature-range choice.	30-40	6-10	
Swits	65 w x 33 h mm	180 h x 265 w x 220 d mm. or 600 x 130 x 100 h mm.	Over 5 m Preferably integral to the building but where this is not possible esternal under the eaves. It is important to have several potential most site for \$2+GBEr2009-202	Out of direct surlight away from windows 8 BatsPads&Zeds	No requirements that I am aware of expect to avoid direct sun that would lead to over- heating.		Concrete, masonry or marine ply. In establishing a new colony, playing recorded swift calls may attract them.
	32mm hole	350 h x 150 w x 150	ideally within the shurt we at selfitioauos	Out of direct sun. Fasterly host			

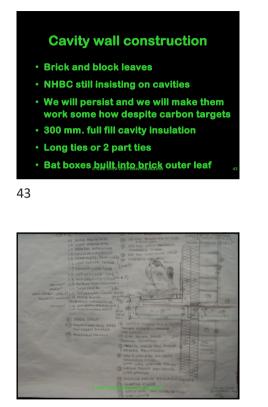


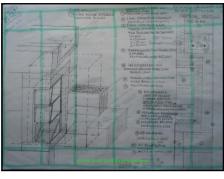
22/11/2024



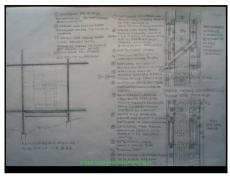


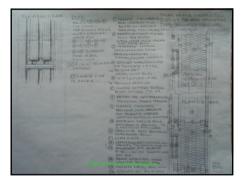
22/11/2024

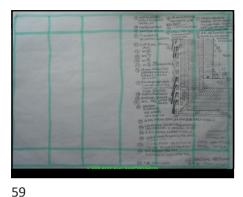


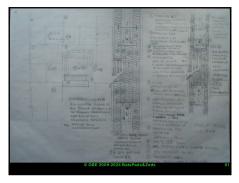


22/11/2024

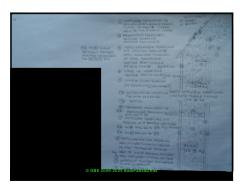


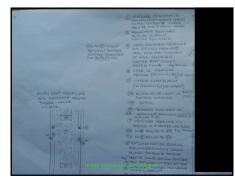




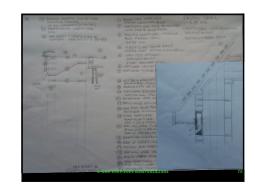


22/11/2024

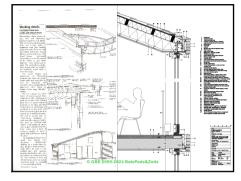


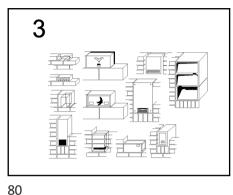


22/11/2024

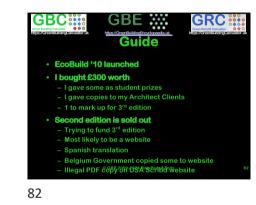


<complex-block><complex-block>

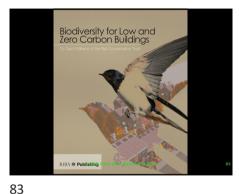


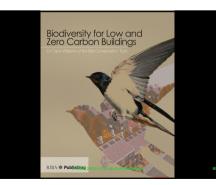


22/11/2024

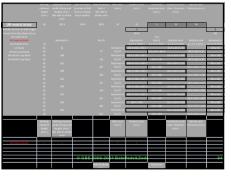


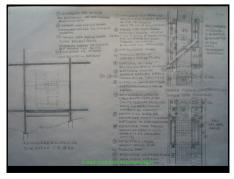

-

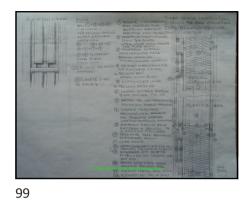


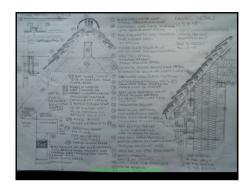

81











22/11/2024

101

١R	BARRIER
	ir barrier comprises materials and/or components, which are air impervious or virtually so, separating condition
	es (heated, cooled or humidity controlled, usually inside), from unconditioned spaces (unheated, un-cooled, idity uncontrolled, usually outside).
bas	ed on SEDA Scottish Environmental Design Association definition)
١R	EXFILTRATION
	uncontrolled outward leakage of indoor air through cracks, discontinuities and other unintentional openings in t ling envelope.
	A Scottish Environmental Design Association)
	inter the air is likely to be heated and heated air exfiltration will result in uncontrolled heat loss and potential
	stitial condensation risk.
Gre	enSpec '09 & EBS '09)
١R	INFILTRATION
	uncontrolled inward leakage of outdoor air through cracks, discontinuities and other unintentional openings in t
	ling envelope.
	DA Scottish Environmental Design Association) inter the air is likely to be cold and cold air infiltration will result in uncontrolled draughts. leading to thermal
	inter the air is likely to be cold and cold air inilitration will result in uncontrolled draughts, leading to thermal
	enSpec '09 & EBS '09)
VID.	I FAKAGE PATH
	ute by which air enters or leaves a building or flows through a component.
	ed on SEDA Airtightness Guide definition)
eak	air leakage path may not pass directly through an element but can also pass long its length or across its area, s in the external envelop can manifest themselves in more than one location and in any junction of external or
	nal construction.
	terboard is an example of an air-leaky construction where air moves between walls and plasterboard and leak
Jul o	of electrical switches and sockets, around skitling, stor4 BatsPads&Zads s through the building fabric through which air can pass, that can destroy the integrity of the fabric's acoustic,
	is brough the building facho through which air can pass, that can destroy the integrity of the facho's acoustic, nal, wind, weather, water and air tightness performance.

102

