
www.capem.eu

AHMM CPD a MasterClass

Commercial Green Construction & Materials Embodied Carbon Footprints Greening-Up NBS Anti VE & D&B Substitution measures

This & contained presentations

- http://www.scribd.com/doc/52508941
- Scribd: <u>www.scribd.com/brianspecman</u>
- > collection >
- CPD Seminars to Architects:
- Specifications:
- Calculator Spreadsheets:

- Sensible suggestions for materials for large scale building projects

 insulation, concrete, not timber
 embodied carbon & carbon footprints

 how to Green-up NBS specifications

 ensuring intentions survive VE & D&B
- How do others do it

www.capem.eu

Burdens

© NGS GreenSpec 2011 BrianMurphy

	reenSpec
line).	Burdens
in part and the second	Section of the sectio
Aufordungen Michelen Synerike Registeren Kantenen	
Recentler Software Notes & Recentler Recent Process	The life case was includent and that is added as a set of the set
	A sub-Regard of the strategy of the control of the state of the strategy of th
	Debarry summable coversation ?

Commercial Green

© Andrew Pettifer Gifford and Partners

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

21/04/2011

www.capem.eu

Posted on Scribd

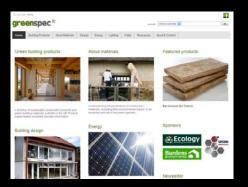
www.scribd.com/brianspecman

 PROBEQUERTES - EXIV, LOW COSIV	STRACHTOPRAND - WORK WILL STANDALDHE BUT BETTER IN COMBANDERS		- MUST OF IN COMMINITORS	><	TRULT-DIPONSME/LIMITED APPLICATION
COMESTIC PASSANE SCEAR BLINCS	WINTER ATEM NES (LOW & ANSON WOOD INST LOW &) MERHANNIS - SIMDING FIXED EXTERNAL SHADES IDED SPACE LAYOUT	WROTER GARDEN TREFLE GLAZING COLONNEL - SHOR COLONNEL - SHOR	LIGHT SHELMS NJ KOVENILE EX	DOLULES	en pacador suum suuss
EXPOSED MASS MASS IMPROV	D ROOF SEDUM ROOF THE RO	a DANTI SHELTERING			
		TRAESPARTA LETRATE NOL			
ACTIVE NATURAL	VENTILATION HEAT RECOVERY SOL AIR	52	2		
CHOUGH VERILATION NICHT VENTILA SWART ETWICTURE, CHOICES LOW E LIGHTING LOW E APPLIANCES HIGH ETFECTIONEY HOURS LOW TEMP HEATING LIGAL CONTROLS ZONE CONTROLS WARNELE SPEED PARTS	TION MIXED MODE VENTILATION DISPLACEMENT VENTILATION SIMPLE LIGHTING CONTROLS CONDENSING BOILERS LOW TEMP DIFF COOLIN OPTIMISED CONTROLS WRIABLE SPEED DRIVES	STIC	emous S/BEAMS SI	HOUSTIC COMMUNITIES	
REDUCING HEXT GAINS ZONING - TFT MOR WIDENING COMFORT TARGETS FUNIT DEBULATION WINDOW DESIGN	ITORS	HOT I	LENCONG EDOC/MINI	Ŷ	
DAYLIGHTING VIEWS	VEGETATION SHADING POMAGABLE LANDSCAPE ADMINIC COOLING WOND	DEVENIENTEN	PORT HOLE COOLING		ý.
SWPLE WITTERN, CHOICE GMS/OIL/ELECTRICITY	DETERMINED HATERALCHOCE	STATE FRAME FRAME CONTRACT	SPEAKE SANRAS		
REDUCING WASTE/RECYCLING/LIFE CYCLE	80885 1047149 AF-OROUND 80588017/1008017 907107 A97144-029 CAP	HORD-OF FUELCELL	RP64.		PHOTOWOLTAICS
LAND USE	RANNATER RECICLING	onewanter of	EVOLUE	a white	ON STE WATE DEVIDEN
NORE TRADITION, COL, ECAN- pto >	LEUSEATEN TENTENNE, CATEGO TRADAG.	20% CO	L PRODUCTION OFCLINING	Secon cong	19551. FUELS GONG. GONG. GONE? (3

In a complex world...... A perspective on building technologies for the mainstream UK

Architecture

Engineering


Sustainable

Commercial Green

- Not 100% glazed and 100% A/C – Solar control essential
- Appropriate Technologies – Commercially Developed Technologies
- Appropriate design
 - Not: I can CAD, CAD can, So I do
 - $-1000 \times 1 \text{ or } 1 \times 1000$
- Multi functional systems

 Value Engineering Stuff into projects
- Resource Efficient Design
- 21/04/2011 Avoiding Waste

www.capem.eu

Embodied Energy Embodied Carbon & Carbon Footprints © NGS GreenSpec 2011 BrianMurphy 10 21/04/2011

Embodied Carbon Footprints

- Embodied Carbon
- Embodied Energy
- Materials Elements/Systems Buildings
- Carbon Footprint

G	reenSpec	
last.	uside	Burdens
The state of the s	GroonSpac: 'A top CPD provider'	(i) Ecology
	A server and a server a server of the server	£50
PT Terrarententen Material Material Material	visit our new section- housing refurbishment	

Jargon Buster: Carbon Dioxide CO₂ Definitions & Meanings

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

Embodied Carbon

CPD topic

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

21/04/2011

13

Embodied Environmental impacts

- Not just Carbon
 - Resource Consumption
 - Energy
 - Materials
 - Chemicals
 - Water
 - Waste
 - Emissions
 - Pollution to air
 - Pollution to land: waste
 - Pollution to water
 - Pollution to humans, animals and plants

Embodied Carbon in Energy

UK Carbon Content of Fuel	kgCO2/kWh 2009 (Carbon Trust)
Grid Electricity	0.537
Coal	0.330
Oil (Gas oil)	0.252
LPG	0.214
Natural Gas	0.185
Biomass	0.025 If sourced with 30km of the site
Solar	0.000

Embodied Energy & Carbon in:

Materials & Products

- Labour to: quarry, forest, field, factory
- Energy & Fuel in: factory, mill, quarry
- Transport from quarry, forest, field to factory
- Packaging, Protection & Stability
- Logistics to site (inefficient is worse)
- Labour & Transport to site
 - Assembly on site
- Waste
 - Support, Packaging, Separation, Protection & Stability
 - Off-cuts
 - Over ordered
 - Stolen or disappeared
 - Damaged or spoiled
 - Rejected on quality grounds

21/04/2011 Labour & Transport to landfill

Embodied Energy & Carbon in:

Materials

- Mixing of resources and their assembly
- Products: assembly of materials

 And the fixings, fasteners, adhesives
- Elements: assemblies of component parts
 - And the fixings, fastenings, adhesives
- Buildings: assemblies of elements
 - And the connecting of parts
 - And the sealing of joints between parts
- 21/04/20 1 Finishing them off

the Alliance *for* Sustainable Building Products

Low Carbon Healthy Building high performance materials

- BRE GGtS is a barrier to low carbon
 materials
 - Alliance formed to break that barrier
 - Many participating companies
 - Many developing tools
 - GreenSpec is part of the offering
 - natureplus® products available across EU,
 - big move to bring the label to UK
- Launching in September

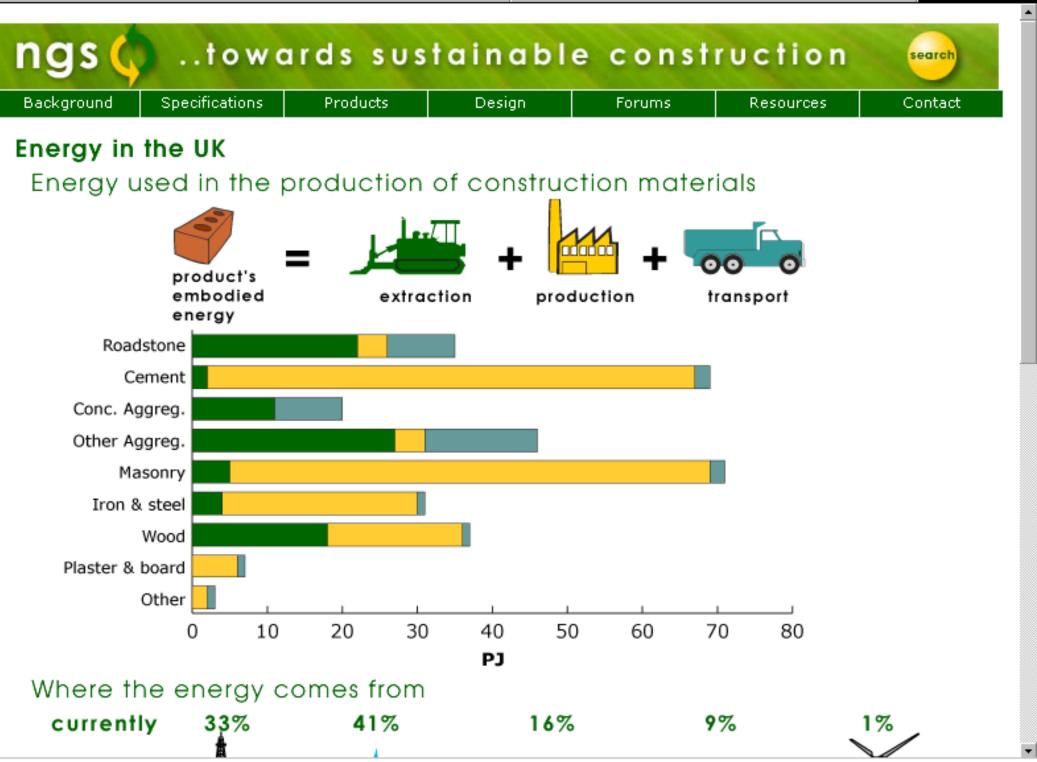
www.greenspec.co.uk

Violet materials: Cement Concrete & Blockwork

The Environment & The Problems The Competition & Some Solutions

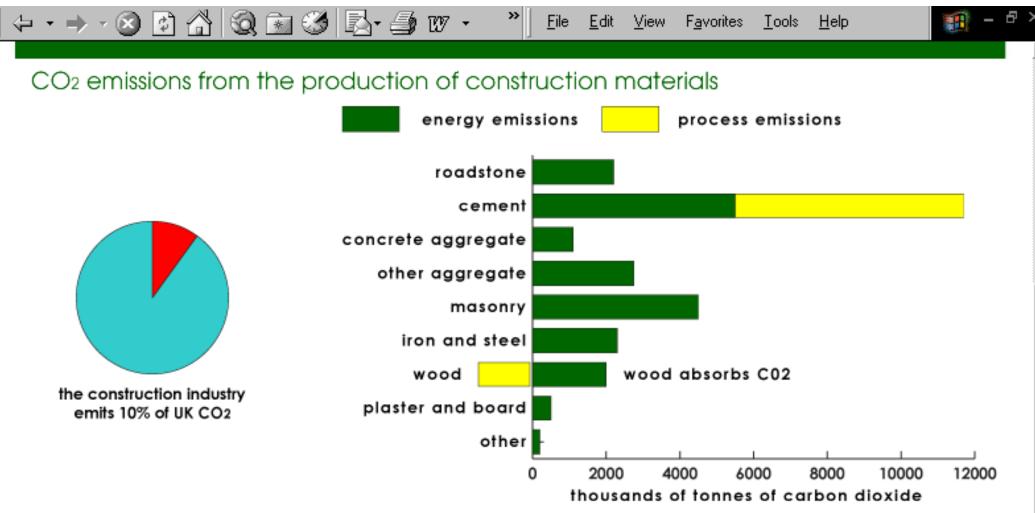
Another GreenSpec CPD file to download See www.scribd.com/brianspecman

19


^ Q 🖻 🎯 🗗 - 🎒 W -

\$

<u>E</u>dit <u>V</u>iew F<u>a</u>vorites <u>T</u>ools


Help

»

File

What are greenhouse gases?

Some greenhouse gases occur naturally in the atmosphere, while others result from human activities. Naturally occuring greenhouse gases include water vapour, carbon dioxide, methane, nitrous oxide and ozone. Certain human activities, however, add to the levels of most of these naturally occurring gases:

Carbon dioxide is released to the atmosphere when solid waste, fossil fuels (oil, natural gas and coal) and wood and wood products are burned. CO2 represents around 50% of all greenhouse gases.

Methane is emitted during the production and transport of coal, natural gas and oil. Methane emissions also result from the decomposition of organic wastes in municipal solid waste landfills, and the raising of livestock.

Nitrous oxide is emitted during agricultural and industrial activities, as well as during combustion of solid waste and fossil fuels.

Very powerful greenhouse gases that are not naturally occurring include hydrofluorocarbons (HFCs),

Embodied C & E in Resources

- Minerals: Low generally
- Rock:
 - Some is seasonal
 - Heavy to extract, handle, package, transport
 - Processing and finishing
- Sub Soil & Top Soil:
 - Heavy & bulky to transport
 - Cheap to dispose of subsoil
 - Topsoil is scarce reuse it
 - Use it on site,
 - Minimise export and import
- Shell:
 - Renewable
- 21/04/2011
- DPM, Render,

Embodied C & E in Resources

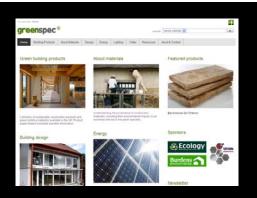
- Vegetable: Trees, Plants
- Applications:
 - Insulation, structure, framing, surfaces
- Trees

21/04/2011

- Renewable
- Carbon Negative: Carbon Sequestration
- After processing: (some energy inputs)
 - Negative, neutral or low
- Plants & Bamboo
 - Rapidly renewable
 - Carbon Negative: Carbon Sequestration

After processing: (some energy inputs)

Negative, neutral or low


Embodied C & E in Resources:

• Animal:

- Skin, Fur, Feather, Milk, Shell, Residual, Waste

Rapidly renewable:

- Fur/Hair/Wool: seasonal; Insulation, reinforcement
- Milk & Egg: Daily: Paints
- Poo: plaster, bricks, fuel
- Renewable: at end of animals life
 - Leather, Linings, Rugs, Glue, Dye, Paint
 - Shell: DPM, renders
- Vegan: anti animal exploitation
 - Whilst we remain carnivores:
 - meat bi-products: not waste

- Warts and all
 - Inconsistency reigns
 - But its all we have at the moment

ICE Database

- Materials
 - Good guide as to which materials to avoid
 - Use less of the worst
- Proportion
 - Need to calculate elements and buildings
 - But violet industry wants us to ignore the material characteristics
 Use less of the worst
- 21/04/2011

You are here: About Materials

search whole website 🗸

	Home	Building Products	About Materials	Design	Energy	Lighting	Water	Resources	About & Contact	My GreenSpec
--	------	-------------------	-----------------	--------	--------	----------	-------	-----------	-----------------	--------------

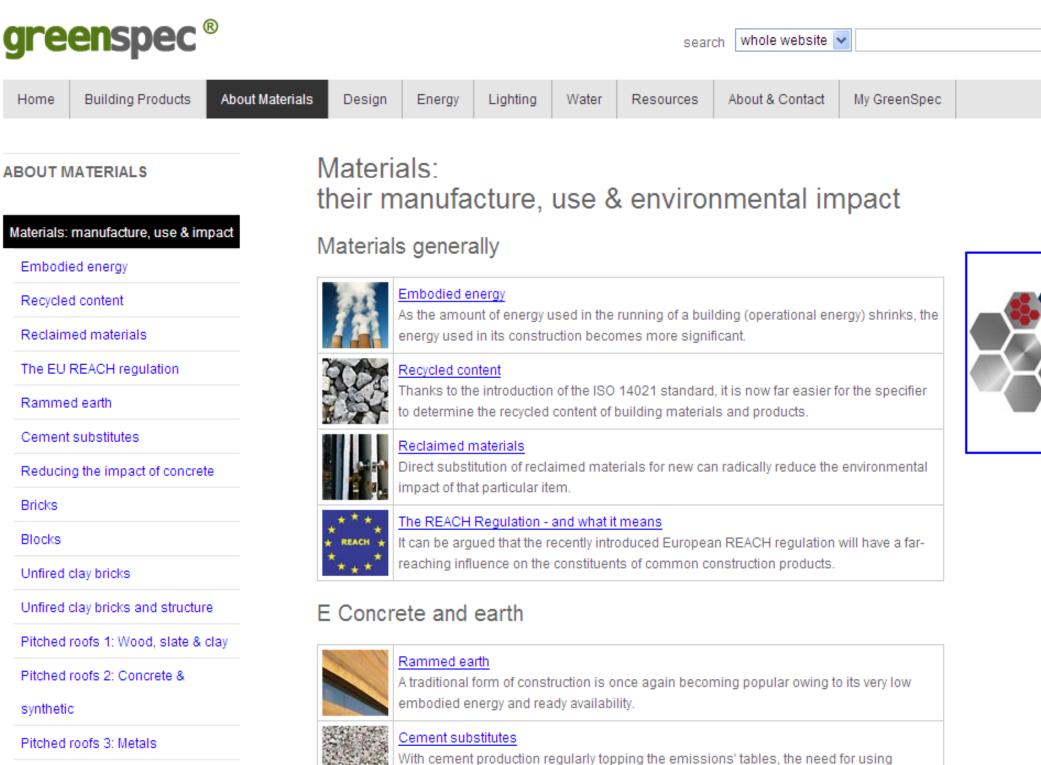
ABOUT MATERIALS

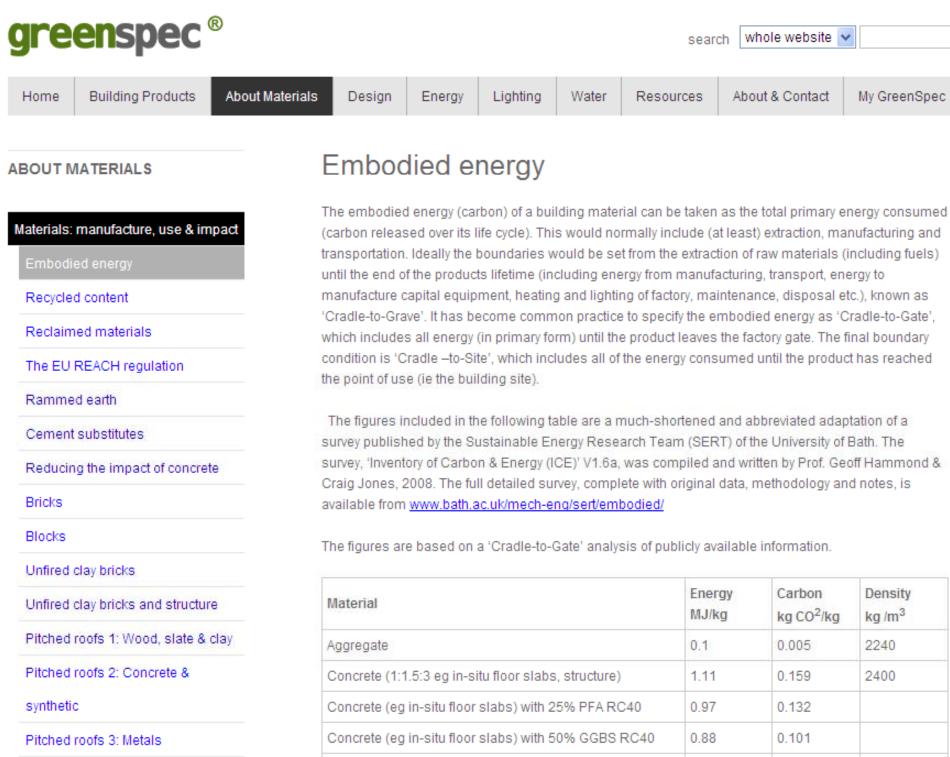
Materials: manufacture, use & impact

Materials: whole life costing

Materials

Contents


Materials: their manufacture, use and and environmental impact


An awareness of the impact of specifying materials is an essential part of the approach to green building design. This section looks at a large variety of traditional, contemporary and new materials and products. It examines their manufacture, their impact on the environment and human health, as well as providing guidance to their use.

Materials: whole life performance and cost

The longer the whole life performance and lower the whole life cost the better a component performs from a sustainability perspective. This section contains a series of articles written by Peter Mayer and first published in *Building* magazine.

My GreenSpec

The figures included in the following table are a much-shortened and abbreviated adaptation of a survey published by the Sustainable Energy Research Team (SERT) of the University of Bath. The survey, 'Inventory of Carbon & Energy (ICE)' V1.6a, was compiled and written by Prof. Geoff Hammond & Craig Jones, 2008. The full detailed survey, complete with original data, methodology and notes, is

The figures are based on a 'Cradle-to-Gate' analysis of publicly available information.

Material	Energy MJ/kg	Carbon kg CO ² /kg	Density kg /m ³
Aggregate	0.1	0.005	2240
Concrete (1:1.5:3 eg in-situ floor slabs, structure)	1.11	0.159	2400
Concrete (eg in-situ floor slabs) with 25% PFA RC40	0.97	0.132	
Concrete (eg in-situ floor slabs) with 50% GGBS RC40	0.88	0.101	
Dricke (facing)	0.0	0.52	1700

		Embodied			Embodied	Embodied	Embodood	
Material	Embodied Energy	Embodied Energy	Embodied Energy	Area	Embodied Carbon	Embodied Carbon	Embodoed Carbon	Density
Matenar	MJ/kg	MJ/m ²	MJ/item	m2	kg CO ² /kg		kc CO ₂ /item	kg/m ³
Aggregate	0.083				0.0048			2240
Concrete (1:1.5:3 eg in-situ floor slabs, structure)	1.11				0.159			2400
Concrete (eg in-situ floor slabs) with 25% PFA RC40 Concrete (eg in-situ floor slabs) with 50% GGBS RC40	0.97 0.88				0.132			2400 2400
Bricks (comon)	3				0.24			1700
Concrete block (Medium density 10 N/mm2))	0.67				0.073			1450
Aerated block	3.5				0.3			750
Rammed earth (no cement content)	0.45				0.023			1460
Rammed earth (with cement content) Limestone block	0.85							1460 2180
Marble	2				0.116			2500
Marble	2				0.116			2500
Cement mortar (1:3)	1.33				0.208			7800
Steel (general - average recycled content) Steel (section - average recycled content)	20.1 21.5				1.37			7800 7800
Steel (pipe - average recycled content)	19.8				1.37			7800
Stainless steel	56.7				6.15			
Timber (general - excludes sequestration)	10				0.72			480
Timber (general - includes sequestration) Timber (general - excludes sequestration)	10 10				0.72			480 720
Timber (general - includes sequestration)	10				0.72			720
Glue laminated timber	12				0.87			
Sawn hardwood	10.4				0.86			700
Sawn har dwood	10.4				0.86			800
Cellular glass insulation Cellulose insulation (loose fill)	27 0.94							43
Cellulose insulation (loose fill)	3.3							43
Cork insulation	26							160
Glass fibre insulation (glass wool)	28				1.35			12
Flax insulation Rockwool (slab)	39.5 16.8				1.7 1.05			30 24
Expanded Polystyrene insulation	88.6				2.55			15
Expanded Polystyrene insulation	88.6				2.55			30
Polyurethane insulation (rigid foam)	101.5				3.48			30
Woodwool board insulation Wool (recycled) insulation	20 20.9				0.98			25
Straw bale	0.91							25 100
Straw bale	0.91							110
Mineral fibre roofing tile	37				2.7			1850
Slate (UK)	0.1				0.006			1600 1600
Slate (imported) Slate (UK)	0.1				0.058			1600
Slate (imported)	1				0.058			1600
Clay tile	6.5				0.45			1900
Aluminium (general & incl 33% recycled)	155				8.24			2700
Bitumen (general) min. Bitumen (general) max.	51				0.38			
Hardboard	16				1.05			600
Hardboard	16				1.05			1000
Hardboard	16				1.05			600
Hardboard MDF	16 11				1.05 0.72			1000 680
MDF	11				0.72			760
OSB	15				0.96			640
Plywood	15				1.07			540
Plywood Plasterboard	15 6.75				1.07 0.38			700 800
Gypsum plaster	1.8				0.12			1120
Glass	15				0.85			2500
PVC (general)	77.2				28.1			1380
PVC pipe Linoleum	67.50 25				24.40 1.21			1400 1200
PVC Vinyl flooring	65.64				2.92			1200
Terrazzo tiles	1.4				0.12			1750
Ceramic tiles	12	070			0.74	10 7		2000
Carpet tiles, nylon (Polyamide), pile weight 770g/m2 Wool carpet	106	279			5.53	13.7		
Wallpaper	36.4				1.93			
Wood stain / varnish	50				5.35			
Vitrified clay pipe (DN 500)	7.9				0.52			

Building Calculations

1	l st	art EN 💆 Lotus Org	ganizer - [As 📑 AHMMCPD.pptx	🛛 🔀 Mid	rosoft E	xcel - Gre								Search E	esktop)	Q		207	ଽ୶ୄଢ଼ୡ	94	10:17
C	Gree	nSpec_Materials_EmbodiedEn	nergyCO2_ICE2_A02_120311.xls [Compat	ibility Mo	de] - N	licrosoft Exc	el													- 1	o x
	F Specif ication		H	l Embodied Energy		K L Embodied Ares Energy o	a Emb rm2 C	oodied Carbon	O P Embodie Embodoed d Carbon Carbon kc	Denoty	R Weigh t	S Source	T		V V Area or m2	thickness X A	÷	AB AC		AF bodied ergy	Embe Carb
1	CA₩ S		Whole Building Totals	MJ/kg	MJ/m²	MJ/item section	n kgC	CO²/kg	kg COz/item	kg/m³	kg/m2	2	Energy MJ/m3	kg CO2/m3	Section	thic	Ľ	ě		ilding ,517,648.82	Build 355
3 4 5 6			Examples Examples Examples																		
7 8 9	E10 E10 E10	Concrete	Concrete (1:1.5:3 eq in-situ floor slabs, structure) Concrete (eq in-situ floor slabs) with 25% PFA RC40 Concrete (eq in-situ floor slabs) with 50% GGBS RC40	1.11 0.97 0.88				0.159 0.132 0.101		2400 2400 2400		ICE 1 & 2 ICE 1 & 2 ICE 1 & 2	2,328	382 317 242	1 m2 1 m2 1 m2	1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3	2,664 2,328 2,112	
10 11 12	E10 E70 F10	Concrete Rammed Earth	Aggregate Rammed earth (no cement content) Bricks (facing)	0.083				0.0048 0.023 1.46		2240 1460 1700		ICE 2 ICE 1 & 2 ICE 1	186	11 34 2,482	2 m2 1 m2 2 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	2 m3 1 m3 2 m3	372 657 27,880	4
13 14 15	F10 F10 F10	Brick/block walling Brick/block walling	Aerated block Bricks (common) Concrete block (Medium density 10 N/mm2))	8.2 3.5 3 0.67				0.3 0.24 0.073		750 1700 1450		ICE 1 & 2 ICE 2 ICE 2	2,625 5,100 972	225 408 106	1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3	2,625 5,100 972	=
16 17 18	F42 F42 G10	Straw bale walling	Straw bale (minimum) Straw bale (maximum) Steel (recycled)	0.24				0.01 0.01 0.43		100 110 7800		ICE 1 ICE 1 ICE 1	24 26 74,100	1 3,354	2 m2 2 m2 2 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	2 m3 2 m3 2 m3	48 53 148,200	6
19 20 21	G10 G10 G10	Steel Structures Steel Structures	Steel (typical virgin/recycled) Steel (virgin) Iron (general & average)	24.4 35.3 25				1.77 2.75 1.91		7800 7800 7870		ICE 1 ICE 1 ICE 1 & 2	190,320 275,340 196,750	13,806 21,450 15,032	2 m2 2 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	2 m3 2 m3 1 m3	380,640 550,680 196,750	21 42 1
22 23 24	G10 G10 G10 H51	Steel Structures Steel Structures	Steel (general - average recycled content) Steel (pipe - average recycled content) Steel (section - average recycled content)	20.1 19.8 21.5				1.37 1.37 1.42		7800 7800 7800		ICE 2 ICE 2 ICE 2	156,780 154,440 167,700 5,000	10,686 10,686 11,076	1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m		1 m3 1 m3 1 m3	156,780 154,440 167,700 5,000	10 10 11
25 26 27 28	H51 H60 H62 H62	Plain Tiles Natural Slate roofing	Mable Claytile Slate (UK) Slate (imported)	2 6.5 0.1				0.116 0.45 0.006 0.058		2500 1900 1600		ICE 2 ICE 2 ICE 1 & 2 ICE 2	12,350	290 855 10 93	1 m2 1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3 1 m3	5,000 12,350 160 1,600	
29 30 31	H65 H66 H71	Single lap Roof tiles Bituminous felt shingling	Concrete tile Mineral fibre roofing tile Lead (incl 61% recycled)	2 37 25.21				0.058		2100 1850 11340		ICE 2 ICE 1 ICE 2	4,200 68,450 285,881	452 4,995 17,804	2 m2 1 m2 1 m2	1 m 1 m	1 m	1 m 1 m 1 m	2 m3 1 m3 1 m3	8,400 68,450 285,881	4
32 33 34	H73 H73 K10	Copper cladding/roofing Copper cladding/roofing Plasterboard drylining	Copper (average incl. 46% recycled) Copper (average incl. 37% recycled) Plasterboard	48 42 6.75				3.01 2.6 0.38		8600 8600 800		ICE 1 ICE 2 ICE 1 & 2		25,886 22,360 304	2 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	2 m3 1 m3 1 m3	825,600 361,200 5,400	5
35 36 37 38	K11 K11 K11 K11	Rigid sheet flooring/sheathing/linings/casings Rigid sheet flooring/sheathing/linings/casings Rigid sheet flooring/sheathing/linings/casings Rigid sheet flooring/sheathing/linings/casings	Hardboard (minimum) MDF (Minimum)	16 16 11				1.05 1.05 0.72 1.07		1000 600 680 700		ICE 2 ICE 2 ICE 2 ICE 2	16,000 3,600 7,480 10,500	1,050 630 430 743	1 m2 1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3 1 m3	16,000 9,600 7,480 10,500	
39 40 41	K11 K11 K11	Rigid sheet flooring/sheathing/linings/casings Rigid sheet flooring/sheathing/linings/casings Rigid sheet flooring/sheathing/linings/casings	Plywood (minimum) MDF (Maximum)	15				1.07 0.72 0.36		540 760 640		ICE 2 PD PD	8,100 8,360 9,600	578 547 614	1 m2 1 m2 1 m2	1 m 1 m	1 m	1 m 1 m	1 m3 1 m3 1 m3	8,100 8,360 9,600	
44	L40 M20 M40	Glazing Plaster/Render Roughcast coatings Tiles wall/floor coverings	Glass Gypsum plaster Marble	15				0.85 0.12 0.112		2500 1120 2500		ICE 1 & 2 ICE 1 & 2 ICE 1		2,125 134 280	1 m2 1 m2 2 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 2 m3	37,500 2,016 10,000	
45 46 47 48	M40 M40 M40	Tiles wall/floor coverings Stone floor/wall tile	State (UK) Ceramic tiles Marble	0.1				0.006 0.74 0.116		1600 2000 2500		ICE 1 & 2 ICE 2 ICE 2	160 24,000 5,000 1,600	10 1,480 290 93	1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3	160 24,000 5,000	
49 50 51	M40 M50 M50	Tiles wall/floor coverings Flexible floor coverings	Slate (imported) Terrazzo tiles Linoleum PVC Vinu/ flooring	1.4 25 65.64				0.058 0.12 1.21 2.32		1600 1750 1200 1200		ICE 2 PD ICE 1 & 2 ICE 1 & 2	2,450 30,000	210 1,452 3,504	1 m2 1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m 1 m	1 m3 1 m3 1 m3 1 m3	2,450 30,000 78,768	1
52 53 54	P10 P10 P10	Proofing: Insulation	Cork insulation Glass fibre insulation (quilt) Polyurethane insulation	4 28 72.1				0.19		160 12 30		ICE 1 ICE 1 ICE 1	640 336 2,163	30 16 90	2 m2 2 m2 2 m2 2 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	2 m3 2 m3 2 m3	1,280 672 4,326	
55 56 57	P10 P10	Proofing: Insulation Proofing: Insulation	Rockwool (slab) Expanded Polystyrene insulation (minimum) Glass fibre insulation (glass wool)	16.8 88.6 28				1.05 2.55 1.35		24 15 12		ICE 1 & 2 ICE 2 ICE 2	403 1,329 336	25 38 16	1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3	403 1,329 336	
58 59 60 61	P10 P10 P10 022	Proofing: Insulation Proofing: Insulation	Polyurethane insulation (rigid foam) Expanded Polystyrene insulation (maximum) Flax insulation	101.5 88.6 39.5 2.41				3.48 2.55 1.7 0.14		30 30 30 2100		ICE 2 PD PD ICE 1	3,045 2,658 1,185 5,061	104 77 51 294	1 m2 1 m2 1 m2 2 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3 2 m3	3,045 2,658 1,185 10,122	
62 63 64	025 R11 Z10	Paving Above ground drainage	Asphalt paving Concrete paving PVC pipe Hardboard (maximum)	2.41 1.24 67.50				0.14 0.127 24.40 1.05		2000 2000 1400 1000		ICE 1 PD ICE 2	2,480 94,500 16,000	254 254 34,160 1,050	1 m2 1 m2 1 m2	1 m 1 m 1 m	1 m	1 m 1 m 1 m	1 m3 1 m3 1 m3	2,480 94,500 16,000	34
65 66 67	210 210 210	Timber Timber Timber	Hardboard (minimum) Sawn hardwood (maximum) Sawn hardwood (minimum)	16 10.4 10.4				1.05 0.86 0.86		600 800 700		ICE 2 ICE 2 ICE 2	9,600 8,320 7,280	630 688 602	1 m2 1 m2 1 m2	1 m 1 m	1 m	1 m 1 m	1 m3 1 m3 1 m3	9,600 8,320 7,280	
88			ns Revisions ICF1 ICF2 😤	40				0.70	14	200		LOS 0	7 200	518	1 m2	1	1	1	1 m3	7 200	

www.capem.eu

- Posted on Scribd
- www.scribd.com/brianspecman

Spreadsheets

© NGS GreenSpec 2011 BrianMurphy

0.1	0.1	0.1	0.1	•			Whole Building Totals		
0	0.0	0.0	0.2			E.g. Floor	Examples		
		0.0				E.g. Wall	Examples		
		0.0				E.g. Windows or PV E.g. Frame	Examples		
		0.0				E.g. Frame	Examples		
I				l	1				
102	1	2	1	Materials	E10	Concrete	Aggregate	0.083	
102	•	2		Materialo				0.000	
7	1	1	1	Materials	F10		Bricks (facing)	8.2	
	•			Matchais	1 10			0.2	
106	1	2	1	Materials	F10	Brick/block walling	Bricks (common)	3	
107	1	2	1	Materials	F10	Brick/block walling	Concrete block (Medium density 10 N/mm2))	0.67	
	1	1	1	Materials	1	Straw bale walling	Straw bale (minimum)	0.07	
11		1	4		F42				
11	1	1	1	Materials	F42	Straw bale walling	Straw bale (maximum)	0.24	
12	1	1	1	Materials	G10		Steel (recycled)	9.5	
13	1	1	1	Materials	G10		Steel (typical virgin/recycled)	24.4	
14	1	1	1	Materials	G10		Steel (virgin)	35.3	
			1				average		
115	1	2	1	Materials	G10	Steel Structures	Steel (general - average recycled content)	20.1	
117	1	2	1	Materials	G10	Steel Structures	Steel (pipe - average recycled content)	19.8	
116	1	2	1	Materials	G10	Steel Structures	Steel (section - average recycled content)	21.5	
113	1	2	1	Materials	H51	Stone Cladding	Marble	2	
145	1	2	1	Materials	H60	Plain Tiles	Clay tile	6.5	
			1						
142	1	2	1	Materials	H62	Natural Slate roofing	Slate (imported)	1	
16	1	1	1	Materials		Single lap Roof tiles	Concrete tile	2	
			1						
174	1	2	1	Materials	H71	Lead cladding/roofing	Lead (incl 61% recycled)	25.21	
21	1	1	1	Materials	H73		Copper (average incl. 46% recycled)	48	
173	1	2	1	Materials	H73	Copper cladding/roofing	Copper (average incl. 37% recycled)	42	
			1						
152	1	2	1	Materials	K11	Rigid sheet flooring/sheathing/linings/casings	Hardboard (maximum)	16	
151	1	2	1	Materials	K11	Rigid sheet flooring/sheathing/linings/casings	Hardboard (minimum)	16	
153	1	2	1	Materials	K11	Rigid sheet flooring/sheathing/linings/casings	MDF (Minimum)	11	
157	1	2	1		K11	Rigid sheet flooring/sheathing/linings/casings	Plywood (maximum)	15	
156	1	2	1	Materials	K11	Rigid sheet flooring/sheathing/linings/casings	Plywood (minimum)	15	
			1			Rigid sheet flooring/sheathing/linings/casings			
			1			Rigid sheet flooring/sheathing/linings/casings			
			1						
			1						
39	1	1	1	Materials	M40		Marble	2	
			1						
166	1	2	1	Materials	M40	Tiles wall/floor coverings	Ceramic tiles	12	
112	1	2	1	Materials	M40	Stone floor/wall tile	Marble	2	
144	1	2	1	Materials	M40	Tiles/Slates floor/wall	Slate (imported)	1	
			1						
			1						
			1						
50					D40				

LCA Life Cycle Assessment

- Using SimaPro and EcoInvent
- Sizes and section areas and density
- Calculate the Environmental Impacts
- In near future LCA & EPD will become available to consider
- Some time soon BIM + LCA
- 3D CAD Generated LCA of building

Embodied Energy + CO2; EP v IUP

Embodied Energy, Embodied CO2,

Environmental Profiles V In Use Performance

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

Embodied V In Use Energy

CPD topic

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

21/04/2011

35

LCGB: Low Carbon Green Buildings

Brian Murphy (GreenSpec)

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

21/04/2011

36

Carbon reduction in design

- Visit the site
- Determine what existing buildings can
 provide
 - Buildings, materials, recyclate
- Determine what nature can provide
 - Solar access
 - Prevailing wind
 - Ground water and its movement
 - Geothermal heat and storage capacity
- 21/04/2011 Precipitation and surface water

Carbon reduction in design

Dematerialise

- No suspended ceilings
- No raised access floors? Cant do both?
- Expose thermal mass
 - Exploit thermal mass
 - Fair faced construction
 - Precious about quality? if you can get it
 - Less precious about quality? If you cant

BRE Green Guide & & GreenSpecStudio On-line design & Specification tool

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

Choosing Materials

You can consider 13 negatives

- BRE Green Guide to Specification
 - 1600 Ready made assemblies

Environmental Profiling

- Green Book Live
- And choose the least violet of the violets
- Or you can consider 276 positives
 - GreenSpec selection criteria
 - GreenSpec Product Pages
 - And choose the greenest of the greens
 - GreenSpec Studio: 892 Assemblies

Carbon reduction in materials:

- High low neutral or negative carbon
- Simple manufacture
- Low carbon fuels
- Less energy
- Chemical and Petrochemical avoidance
- Less bonding more assembly

Energy reduction in manufacture:

- Nickel sulfide inclusions
 - Heat soaking at high temperature for long periods
 - Compare with replacing broken panes
 - Need an LCA to compare
- Aluminium
 - High embodied energy
 - Recycled aluminium 5% 1/20th energy of Virgin
 - Renewable energy is best
 - Hydro electric: high environmental impact

Carbon reduction in construction:

- Avoiding, reducing or replacing cement

 GGBS to permitted %
 - Slower set, same ultimate strength
 - Impact on programme and construction methods and work sequence
- Water has a carbon load
 - Avoid wet processes
 - Dry construction methods
 - Drying evaporation uses heat energy

Carbon reduction in commissioning:

- Drying out building

 Natural ventilation, if practical
- Testing M&E inevitably uses energy
- IR Thermography uses heat
- Airtightness testing uses electricity and drives out heat or sucks in coolth
- Co-ordinate the testing to use each other's energy if you can

Carbon reduction in use:

• Energy Efficiency:

- Heat, Cool, Vent and Water
- Natural rather than mechanical and fuel
- Economic to maintain:
 - Tough, Durable, Long life
 - Low cost cleaning
 - Keep good appearance
 - Long replacement interval

Embodied Water (the next big issue) www.capem.eu

- Water used to create a material In the process or the end products or both
 - Source
 - Mains, ground extraction, water bodies
 - Embodied Carbon in water
 - » Carbon load of water
 - Harvested, collected, used, recycled
 - No longer available to the population
 - Water stressed areas: reinforces problem
- Water polluted in the process
- Water in the product
 - Removed from the country of origin

www.capem.eu

Greening Up NBS

21/04/2011

© NGS GreenSpec 2011 BrianMurphy


Greening-Up NBS

- Don't be limited by NBS format & content
- Require something don't permit it
- Don't permit what you do not want
- Specify why you wanted it
- Tender evaluation not just price
- Require evidence of equivalency
- Proactive Substitution Management
 clauses
 ^{OI1} © NGS GreenSpec 2011 BrianMurphy

Don't be limited by NBS format & content

- Its competent and offers choice

 But does not try to encourage being green
- Its started to green itself up
 - Mostly in the guidance
 - Insufficient: step changes needed
- Don't be scared of enhancing an NBS clause
- Its only a checklist after all
- Does your PII provider discourage that?

Required in government funded projects

- In the NBS Preliminaries is enough
- But Wren insist its in the clauses too
- So you have to be more proactive:
 - in writing robust specification clauses
 - and policing the non-equivalents.

Require something don't permit it

- Many engineer's specifications permit greener choices by contractor
- But construction limits material choices
- Educate yourself in the greener option
- Design the greener option
- Specify the greener option
- Insist its is not substituted

Don't permit something you do not want

- Specify what you want
 - If you want Composite timber/aluminium
 Specify it
- Exclude what you do not want
 - If there is a risk of PVC substitution
 - And you do not want PVC
 - then exclude PVC

Specify why you wanted it

- If you chose a material or a products because of a property or attribute
- Specify that property or attribute in the document
- Use the specification as the project bible
- Use it to resist substitution
- Or your building will be deficient on the design © NGS GreenSpec 2011 BrianMurphy

Tender Evaluation not just price

- Make reviewing the tender submission part of your responsibility
- Review their:
 - methods statement,
 - specification,
 - alternative and options,
 - substitutions
- Compare it with the specification

Require evidence of equivalency

- Make the Tenderers and the contractor responsible for proving their material choices or design
- In every respect that is specified
- They mark up literature against specification
- They compare and then bring a competent equivalent proposal

Proactive Substitution Management clauses

- Include a clause that requires round table meeting post-tender pre-contract to discuss all departures now
- All substitution proposals:
 - 1 month before ordering materials is required,
 automatic rejection if too late
- They prove equivalency and you review
- They provide all alternative details
- They take responsibility for all substitutions
- List the criteria and your evidence sources by which evidence will be judged



www.capem.eu

Posted on Scribd

www.scribd.com/brianspecman

© NGS GreenSpec 2011 BrianMurphy

Specification Substitution

Case Law, practices & pitfalls

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

21/04/2011

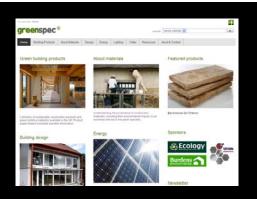
58

www.capem.eu

Anti Value Engineering measures

21/04/2011

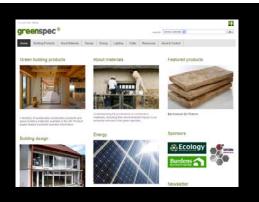
© NGS GreenSpec 2011 BrianMurphy


Value Engineering

Posh for 'Cost Cutting'

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

21/04/2011


60

Raise our game

- QSs regularly use cost cutting dressed up as "Value Engineering" to cut stuff out of projects
- Architects need to learn how to Value Engineer stuff into projects

- Value Engineering v Cost Cutting
- CC Same picture – Replace with 1 thing with a cheaper one
- VE Bigger picture
 - Replace 2 or 3 things with 1
 - Make 1 thing do 2 or 3 things
- Beware of ramifications
 - 1's reliance upon 2 to be avoided
 - Changing 1 requires a change in 2

Anti Value Engineering measures

- Green brief
 - Green feasibility study
 - WLC Whole Life Costing: Data
 - Carbon-back periods
- Green cost plan > Green pricing
 - No violet prices for comparison
 - No pay back periods
- Resource efficient design
- Green tenderers
 - Green contractors & applicators

21/04/2011 Green prices within green cost plan

Anti Value Engineering Measures

- VE stuff into projects
- VE stuff out of projects
 - Labour
 - Waste
 - Weather
 - Air

Labour is expensive

- Reduce labour
- Use multifunctional materials
- Use multifunctional components

 More expensive to buy
 - Cheaper to install one than many
- Offsite prefabrication
- Off site preassembly

 Less labour to travel go to site

Waste is expensive

- Reduce waste
 - Cutting: costs labour & costs materials
- Design to avoid cutting
 - Stop short and change materials
- Use products in the size they are made – Know the sizes and work with them
- Secondary elements sizes

 to fit primary element sizes
- Work with modules not against them

Design to Reduce Waste

Condensed GreenSpec Display

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

Reduce wasteful expensive

- Gypsum is Stable Non-Reactive Hazardous Waste (SNRHW)
- Finally DEFRA and EA are treating as required: = to asbestos
- Expensive disposal at SNRHW sites
- 30% wastage factors is normal – Recent BRE CRWP studies
- Don't use it

or use it efficiently and effectively

www.greenspec.co.uk

Resource Efficiency

Another GreenSpec CPD file to download See www.scribd.com/brianspecman

21/04/2011

Weather is expensive

- Reduce weather influenced activity

 Precipitation
 - Bad working conditions: poor workmanship
 - Low productivity
 - Traction in mud,
 - Splashes spoil materials
 - Cold
 - Prevents frost vulnerable trades
 - Wind
 - Materials handling & Stability
 - Frames/Modules/panels/pod
 - Worker safety
 - Falls, flames, fumes, dust

Air is Expensive

Prefabricated off site,

- Modules & Pods
- Contain fresh air
- Transporting fresh air is expensive
- Panelisation at factory
 - Flat pack delivery is economic no air
 - Assembly on site
- Leaky joints: air, heat & money escapes – Joints need to be designed thoroughly

www.capem.eu

Anti D&B Substitution measures

21/04/2011

© NGS GreenSpec 2011 BrianMurphy

Anti D&B Substitution measures

- Robust Briefing & Some Determination
- Competent Specification for Design
- Robust Specification
- No Lazy anything
- Proactive Substitution Management
- Competent building
- Policing the process

Robust Briefing & Some Determination

- No excess to requirements

 Where compromise becomes easy
- No compromises
- Consider:
 - the pros and cons,
 - the gains and the losses,
 - not just lower price,
 - its budgeted for, why change?

Competent Specification for Design

- Performance Specification:
 - very thorough
 - With test and inspection clauses
- Climate compatible
 - Now and 60 years time
- Airtight Design
 - Airtightness line designed and shown
- Thermal Bridge Free
 <u>– Thermal Flanking Free</u>

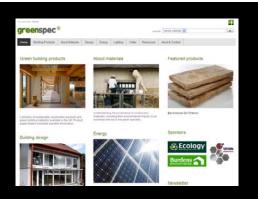
Robust Specification

- Say what you want and mean it
- some slack?
 - If so where?
 - Decide in advance,
 - Say in advance in the Spec
- Proactive Substitution Management

- No lazy
 - Specification
 - Architecture
 - Engineering
 - Construction detailing
- Lazy?:
 - Business as Usual: Status Quo prevails
 - without challenging standard decisions
 - Set out at centre and cut round the edges
 - 100% glazed façade: happy Letting agent
- 21/04/2011
- Put three cold bridges in rather than structurally design them out

Proactive Substitution Management

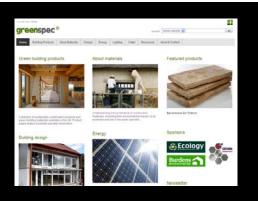
- If you specified
- Check its still there
- Police it on site
 - Beginning to end
 - Not just first delivery


Competent Building

- Meet the brief: not just Architecture
- Comply with regulation

 Prove by testing & monitoring,
- Complying with specification
 - Prove by testing
- Buildability checked design
 - Resource Efficient:
 - Waste free
- Compatible materials
- 21/04/2011 Especially if substitutions occur

Policing the process


- Educate the CA & Site Team
- Don't let them make wrong decisions
- Ensure they understand stuff that's in the spec.
- Make its possible to know in your absence
- Provide guidance notes in the supporting documents or specification system (NBS Building User notes)
 If in doubt ask

NBS Building

- Is a great source of information
- Is potentially a great place to embed Corporate Knowledge
- But this is not supported in major upgrades
- Once the NBS Next Generation is
 launched start using it in this way

www.capem.eu

© GreenSpec

- Brian Murphy BSc Dip Arch (Hons+Dist)
- Architect by Training
- Specification Writer by Choice
- Greening up my act since 1999
- Founder of <u>www.greenspec.co.uk</u>
- E <u>BrianSpecMan@aol.com</u>
- Twitter: <u>http://twitter.com/brianspecman</u>
- Scribd: <u>www.scribd.com/brianspecman</u>
- Facebook:

http://www.facebook.com/pages/GreenSpec/7737546 2337