Lecture: Adopt a material

Advanced Technology Module Leader: Ilona Hay Technology Campion: Brian Murphy

Presented: 16th October 2018 Updated: 17th October 2018

Material Groups

- C01 C02 Ceramics
- F01 F02 Found Objects
- H01 H02 Hand Tools
- P01 P02 Plaster
- T01 T02 Timber
- TX01 TX02 Textiles

Your task: collate & record

- How it is made
 - Raw materials, preparation, process, end product
- Inherent Properties
 - Strength, weakness, construction considerations
- Sustainability
 - Sourcing, production process, pollution caused, carbon footprint, recycling
- Relevant Precedent Studies
 - Construction principles, typologies, details
- Comparative Qualities
 - Compare with the other material groups
- Design process

– Sketches, drawings, prototypes, tectonics, fabrication³

Starts as Clay from the ground

- Excavated subsoil (inert) below topsoil (alive)
- Blended: clays, straw reinforcement, fine sand aggregate, sawdust, mineral dyes
- Format: bricks, block, rammed earth, cob
- Wooden moulds, clay thrown into brick mould,
- Extruded and wire cut into bricks
- Can have texture added by roller
- Common bricks can have sand added to face
- Small balls into formwork and rammed in 75 mm layers squeezed to 50 mm visible layers

- Loadbearing
 - But susceptible to thermal/moisture movement

- Can be sun/air dried: moisture driven off
 - Solar energy intensive but free and no carbon
 - Sets dry but no curing nor strengthening
 - Can be softened with water or steam
 - Can reabsorb moisture vapour moderating humidity, avoiding need for ventilation or air conditioning

17/10/18

© GreenBuildingEncyclopaedia 2018 Adopt a material

Can be fired (cooked)

- High temperature, Energy intensive,
- Carbon level depends on fuel choice
- Clays can have an inherent fuel gas released by heat during firing but flue emissions increase
- Can be glazed (colour coated) for first firing
- Can be double fired
 - Terracotta: glazed for second firing
 - Glazes: Matt to Gloss and big colour range
 - Including mimicking stone

• Formats:

- Bricks, Glazed Bricks, Blocks,
- Floor/wall Tiles, Glazed tiles, Roof tiles
- Rain screen extrusions
- Ornate Sculpture (mimicking stone carving)
- Early form of mass production
 - Stone masons or clay modelers carved ornate pieces,
 - Moulds made or taken, many copies made in terracotta
- Terracotta hollow blocks
 - filled with lightweight aggregate with cement matrix
- Lightweight extruded hollow blocks
 - insulating voids and long pathways make good U values
- Crushed brick:
- ^{17/10/18} consolidated hardcore, piling mat, brown roof gravel

Loadbearing capacity

- Increases with firing temperature
- And choice of clay
- Formation of structure: walls, timbrel arch,
- Moisture permeable: especially with lime mortar jointing
- Water resistant: with cement mortar used as 3 course bricks DPC
 - Engineering brick Damp Proof Course with strong cement mortar
- Acoustic properties due to mass
- Fire Resistant due to firing
- Thermal mass due to density: Good
- Thermal insulation: winter heat loss (conductivity k value): Poor
- Decrement Delay: summer solar radiation protection
 - Thick walls: long delay
 - Thin roof tiles: little protection
- Floor and wall tiles:
 - Strong, tough, easy-clean,
 - Water or chemical-resistant (Grouting performance to match)
 - Slip resistance: Glazed tile slip, unglazed grip
 - depends on footwear: Rubber boots grip, bare feet may slip

- Rammed Earth Wall
 - <u>https://www.pinterest.co.uk/bmurphy1390/rammed-earth-</u> wall/
- Cob
 - <u>https://www.pinterest.co.uk/bmurphy1390/cob/</u>
- Brickwork
 - <u>https://www.pinterest.co.uk/bmurphy1390/f10-brickwork/</u>
- Mortar
 - <u>https://www.pinterest.co.uk/bmurphy1390/z21-mortar/</u>
- Roof wall tiles
 - <u>https://www.pinterest.co.uk/bmurphy1390/h6-slating-tiling-</u> roofing-cladding/
- Timbrel Arch
 - <u>https://www.pinterest.co.uk/bmurphy1390/timbrel-arch-</u> <u>construction/</u>

9

Which materials: [______

- How it is made
 - Raw materials, preparation, process, end product
- Inherent Properties
 - Strength, weakness, construction considerations
- Sustainability
 - Sourcing, production process, pollution caused, carbon footprint, recycling
- Relevant Precedent Studies
 - Construction principles, typologies, details
- Comparative Qualities
 - Compare with the other material groups
- Design process
- 17/10/18 Sketches, drawings, prototypes, tectonics, fabrication 10

• Scope:

- Circular economy (dismantled building parts)
- Architectural Salvage (Hand crafted)
- Construction reclaim (others components)
- 'Dumpster diving' (with owners permission)
 - (surplus to requirements, off-cuts, damaged)
- Materials Exchanges (surplus to requirements)
- Local Resource Locator websites
- Surplus to requirements, Returned to stock
- Industrial process waste: eg. lazar cut waste

- Environmental impacts:
 - Historic manufacture (so impacts ignored?)
 - LCA Life Cycle Analysis (impacts apportioned to main product and bi-product or co-product)
- Reclaimed Product Quality:
 - Product Passport from first life/use
 - Based on Product Specification
 - See BAMB EU Horizon 2020 funded Project
 - Buildings as Material Banks <u>www.bamb2020.eu</u>
 - <u>https://passports.bamb2020.eu</u>

17/10/18

• User name: guest password: bambplatform

Size is everything

- Ideally modular and consistently so
- Designed to reduce waste in first use
- Design with the same in mind or waste more in second use
- Fixing methods is fundamental
 - Design for ease of assembly, dismantling and reassembly
 - State of repair in fixing zone
 - Take care of buried 'lost' fasteners
 - They will wreck your tools: saws and drills
 - Companies with big magnets extract fasteners

- Lazar cutting scraps v efficiency iterations
- <u>https://www.pinterest.co.uk/</u> <u>bmurphy1390/resource-effective-</u> <u>design/</u>

H01 H02 Hand Tools

- Which tools: [____] Which materials: [_____]
- How it is made
 - Raw materials, preparation, process, end product
- Inherent Properties
 - Strength, weakness, construction considerations
- Sustainability
 - Sourcing, production process, pollution caused, carbon footprint, recycling
- Relevant Precedent Studies
 - Construction principles, typologies, details
- Comparative Qualities
 - Compare with the other material groups
- Design process
- 17/10/18 Sketches, drawings, prototypes, tectonics, fabrication 15

Hand Tools/ Hand crafted materials

- Clay: See C01 C02 Ceramics above
- Plaster: See P01 P02 Plaster below
- Timber: See T01 T02 Timber below
- Textiles: See TX01 TX02 Textiles at end
- Metals: See next
- Machining Materials: See after Metals

Metals

• Metals

– <u>https://www.pinterest.co.uk/bmurphy1390/</u> <u>z11-metals/</u>

Machining Sheet Materials

- Lazar cutting
 - <u>https://www.pinterest.co.uk/bmurphy1390/</u> <u>lasar-cutting/</u>
- CNC Milling

 <u>https://www.pinterest.co.uk/bmurphy1390/</u> <u>cnc-millingcutting/</u>

- Resource Efficiency
 - Lazar cutting scraps v efficiency iterations

 <u>https://www.pinterest.co.uk/bmurphy1390/</u> resource-effective-design/

• Materials:

- Clay,
- Horse manure, grass stem reinforced
- Lime: Derived from Limestone (UK) or marine shell (Holland)
- Cement: OPC, GGBS or blended
- Gypsum, Desulferisation gypsum (power station flue gas filtering)
- Diatomacious Earth (prehistoric ocean floor sediment)
- Ingredients:
 - Bulking/Strengthening/texture/colour: Sand and fine aggregate
 - Reinforcement: horse hair, hemp shiv,
 - insulating aggregates: Cork granules, hemp shiv,
 - Pigments: minerals
- Mixes:
 - Cement/lime/sand,
 - Lime/clay/diatomaceous earth/cork granules
- 17/10/18 Hemp/lime, Hemp/lime/cement/aluminium oxide

• Backing/Substrate:

- Solid walls:
 - Masonry with raked joints for key
- Cast concrete with hessian in formwork
 - Smooth concrete may need primer
- Wattle and daub
 - oak strips weaved and lime plaster
- Metal meshes for gypsum plaster
- Application:
 - By hand: leaving hand and finger prints
 - Mortar board > trowel > backing then trowelled smooth
 - Projection: render flicked onto backing: good bond, peaky texture
 - Pebble dash: texture and colour pebbles added to peaky surfaces
 - Pumped through hose: smoothed by trowel
 - Parge coats: airtight before plasterboard
 - Plaster: airtight without plasterboard
 - Wet trade requires time to dry before following trade (paint)

P01 P02 Plaster (internal)

• **Properties**:

- Clay: see C01 C02 Ceramics: (Unfired only)
 - Internal only (unless protected from weather)
 - Moisture mass: moderates humidity
 - Absorbs smells, good for bathrooms
 - Absorbs electromagnetic radiation (wifi etc)
 - High density: adds thermal mass
 - Low skill and strength needed, DIY repairable
 - Add mineral dye; clay skim coats
 - Inert waste, add back to soil?

P01 P02 Plaster (internal) Render (external)

- Properties:
 - Lime:
 - Alkali: Dangerous in the wrong hands (Not DIY)
 - Active waste: in landfill until hydrated, set and strengthened
 - Anti bacteria
 - Moisture mass: moderates humidity
 - Moisture permeable, moisture transport
 - Some carbon sequestration from atmosphere
 - Weaker than cement, flexible,
 - Reclaimable and recyclable (adding heat)
 - Medium density: medium thermal mass

P01 P02 Plaster (internal) Render (external)

- Properties:
 - Cement:
 - High embodied energy and carbon
 - (8-10% of manmade carbon dioxide)
 - Stronger than lime, less flexible, less forgiving
 - Water and water vapour resistant
 - Traps water in walls with no way out
 - Saturates embedded timbers leading to rot and structural failure
 - Never use cement anywhere on or in historic buildings (pre 1919)
 - Inert waste in landfill once set

P01 P02 Plaster (internal)

• **Properties**:

- Gypsum: (internal)
 - Lower embodied energy and carbon
 - Water and water vapour resistant
 - Traps water in walls with no way out
 - Saturates embedded timbers leading to rot and structural failure
 - Avoid gypsum plaster inside external walls in historic buildings (pre 1919) (use lime or clay)
 - Stable Non-Reactive Hazardous waste in landfill (equivalent to asbestos for different reasons)
 - Potential to react with landscape waste
 - Release sulfer to atmosphere making acid rain
 - More expensive to dump so use it wisely

Performance & Application:

- Hemp-lime:
 - Insulating Render/Insulating Plaster
- Applied very thickly 300 mm not unusual
- Slow to set, hydrate, strengthen
 - Ultimate Strength: Less than 3 kN/m2
- Once fully hydrated (>1 year) performs far better than predicted.
- Off site air drying can speed up process
- Exhibits a phase change characteristic
- Some add:
 - Cement for fast initial set and drive the lime to hydrate faster
 - Aluminium oxide to react with cement and foam up for

insulation function

• Performance and Application:

- Diatomacios earth/clay/lime/cork granules:
- Insulating:
 - External Render, Internal Plaster, Floor Screed
- Airtight application, smooth or textured finish
- High thermal mass
 - High decrement delay
 - Summer solar protection
- Moisture Permeability (moisture escapes)
- Hygroscopicity (Moisture buffering)
- Thicknesses: 40-100 normal
 - much thicker possible
- Value engineering: One-coat one-trade multifunctional multi-performance finish

Render

- <u>https://www.pinterest.co.uk/bmurphy1390/</u> <u>m21-external-insulation-with-rendered-</u> <u>finish/</u>
- Cob

– <u>https://www.pinterest.co.uk/bmurphy1390/</u> <u>cob/</u>

- Raw materials: (A seasonal crop)
 - Hardwood: Deciduous, Broadleaf
 - Softwood: Coniferous, Pine needs and cones
 - Moonwood: winter: low sap, night time, least moon gravity, (sacred in some societies?)
- Manufactured:
 - Glulam Glued laminated wood: frames
 - (strength where its needed, weaker where it is not)
 - LVL Laminated Veneer Lumber
 - (using thinnings, thin layers same direction)
 - CLTP Cross Laminated Timber Panels
 - (using thinnings, softwood/plywood in layers)
 - Other compound sections

Timber Panel Products:

- Plywood: thin leafs of wood, glued layers, layers at right angles
- Particleboard:
 - Chipboard (chips),
 - OSB (shavings),
- Wood fibre boards,
 - MDF Medium density fibreboard,
 - medium board,
 - hardboard
- Wood fibre Insulation boards and batts
 - Breathing, sheathing, thermal + acoustic insulating

• Ingredients:

- Treatment: (killing chemistry)
 - Preservatives, Fire protection,
 - rot resistant, insect resistant
- Salts: added to recipe
 - offering any of above treatments
 - Borax mineral (as benign as possible)
- Heat Treatment: Remove nutritional content for Durability

• Assembly:

- Geometry, mechanical connection, friction, gravity
- Adhesives:
 - Historic: animal glue;
 - Modern: synthetic high performance
- Fasteners:
 - Historic: Hardwood Dowels,
 - Modern: Metals, plastic, chipboard biscuit,

• Grown:

- Photosynthesis: nature converting sunlight and Carbon dioxide into cellulose and oxygen (great synergy with humans)
- Carbon Dioxide Sequestration = Carbon negative
- Low energy input with carbon based petrol chain saws
- Transport emissions or floated down rivers, if not remote
- Source:
 - Forests: but ideally very selectively leaving forest intact
 - Plantations: thinnings or the final crop
 - Replanting more trees not palm oil: Sustainable management
- Certified Sustainable:
 - looking after nature and indigenous people
 - FCS Forest Stewardship Council 'or equivalent'
 - Chain of Custody: Plantation > Joiner or Plantation > Building site
- Certified legal: Just got easy
- 17/10/18 EUTR EU Timber Regulations EU Funded Project
 - www.nepcon.org/sourcinghub

- Processing:
 - Debarked (cork comes from bark)
 - Sapwood removed (Perishable recently living, with sap flowing in the veins)
 - Heartwood saved (durability resides here)
 - Sawing, cutting arrangement (waste in sawdust and scraps)
 - Planing, leaving rough or adding texture
 - Waste scraps: fuel or into timber panel products

17/10/18

Machining Energy's carbon: reduces the carbon negativity of timber (but not a lot)

• **Properties**

- Durability:
 - depends upon species
 - will change if grown in different climates
 - is classified and applicable to end use
- Grain:
 - give strength in one direction and weakness in others
 - figuring is not always the same as grain
- Machine able to varying degrees:
 - grain direction dictates, craftsmen know-how
- Designers/Engineers exploit grain direction
- Manufacturer invent products to solve weaknesses

- Connecting Hand made joints
- Paul Sellers does a fine job of a Mortice and Tenon joint in 30 minutes, very detailed commentary
 - <u>https://uk.video.search.yahoo.com/yhs/search?fr=yhs-imt-</u> <u>brwsrex&hsimp=yhs-brwsrex&hspart=imt&p=mortice+and+tenon+joint</u> <u>+video#id=1&vid=6373eb34d00240e8cc58fdd3b7a112dc&action=click</u>
- Drawbored M&T joint with very different approach in 10 minutes, with the magic touch at the end
 - <u>https://uk.video.search.yahoo.com/yhs/search?fr=yhs-imt-</u>
 <u>brwsrex&hsimp=yhs-brwsrex&hspart=imt&p=mortice+and+tenon+joint</u>
 <u>+video#id=6&vid=76f979695f3693e3545e83b045019817&action=view</u>
- And some serious 3D dovetails and a whole lot more in 16 minutes

<u>https://www.youtube.com/watch?v=0kgCsZJGluc</u>

- Connecting: Fixings Fastenings
 - <u>https://www.pinterest.co.uk/bmurphy1390/z20-connectivity/</u>
- Timber Structure
 - <u>https://www.pinterest.co.uk/bmurphy1390/g20-timber/</u>
- Timber
 - <u>https://www.pinterest.co.uk/bmurphy1390/z10-purpose-made-joinery/</u>
- Shingles and Shakes
 - <u>https://www.pinterest.co.uk/bmurphy1390/h64-shingles-shakes/</u>
- Plywood furniture
 - <u>https://www.pinterest.co.uk/bmurphy1390/n20-plywood-</u> 36
 <u>furniture/</u>

TX01 TX02 Textiles

• Scope:

- Carpet/rugs, underlays,
- Hung fabrics
- Stretched fabrics,
- Furniture upholstery,
- Geotextiles,
- Recycled fabric insulation (denim, cotton)
- Materials:
 - animal wool/hair: sheep's wool,
 - insect: cotton, spiders web, silk,
 - Animal or fish leather,
 - Synthetic plastics, Bio-plastics
 - Blends of natural and technical/synthetic
 - (contrary to Cradle to Cradle C2C principles)

TX01 TX02 Textiles

- Ingredients: Sheep dip (historic but might persist), animal droppings, tangles, thorns, seeds/husks, insect eggs,
- Process: separating, washing, carding, combing, dying, weaving, trimming, edging, sewing
- Impacts: unhealthy dip, waste, chemically intensive dying, water polluting, waterway/ waterbody polluting.

• Additional treatments: moth deterrent, fire 17/10/18 treatment in upholstery 38

TX01 TX02 Textiles

- Weaving gives strength, texture, pattern, rhythm, colours
- Different weaves make fabric hang/flow/ stretch/shrink/hug differently
- Treatments improve: fire properties, durability
- Some moth killer treatments:
 - CNS Central Nervous System depressants
 - Invented by Germans to kill British in WW World Wars
 - Now we douse our carpets and fabrics

TX01 TX 02 Textiles

- Applications & Performance:
- Carpet: Thermal insulation: Thermal Comfort, Acoustic: Absorption, Tactile
- Curtains: Solar control, Privacy, Black out, Draft lobby at doors, Thermal insulation at windows, Fire resistance (Stage curtain)
- Wall and Ceiling linings: Decoration, Colour, Acoustic Absorption, may need to be low surface spread of flame and non-combustible
- Furniture: Linings, Upholstery (fire/smoke propeties)

Feedback

- These files are created by generalists with a big dollop of green flavour
- These files are updated from time to time
- We are not experts so from time to time these file may get out of date or may be wrong.

• If you feel that we have got it wrong 17/10/18 please let us know so we can put it right

© GBE 2018

- Brian Murphy BSc Dip Arch (Hons+Dist)
 - Architect by Training
 - Specification Writer by Choice
 - Environmentalist by Actions
- Greening up my act since 1999
- Founded National Green Specification 2001
- Launched www.greenspec.co.uk 2003
- Created: GBE at https://greenbuildingencyclopaedia.uk 2015
- E BrianSpecMan@icloud.com
- Twitter: <u>http://twitter.com/brianspecman</u>
- Twitter: <u>GBEGreenBuild@GBEGreenBuild</u>
- Scribd: BrianSpecMan
- LinkedIn: <u>BrianSpecMan</u>
- Facebook: <u>BrianSpecMan</u> Facebook: <u>http://www.facebook.com/brianspecman</u>
- Google+: <u>BrianSpecMan BrianSpecMan CAPEM NGS National Green Specification</u>
- Slide Share:
- Pinterest: Brian Murphy GBE Green Building Encyclopaedia
- CAP'EM: <u>GreenSpec & NGS</u>
- CAP'EM <u>Compass</u>

^{17/10/18} LSBU London South Bank University Faculty and Course website page Brian Murphy