Tech Lecture 01 Building Envelope Principles

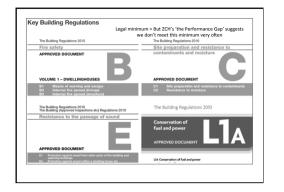
Advanced Technology Module Code: SCTA1140 Semester A: Weeks 10 - 25 Credits: 15 Module Coordinate: Brian Murphy Lecture Author: Kerny + Brian Murphy Lecture Rish Murphy Lecture 01: Week 10 3304-30pm 8[®] October 2019 It this Architecture or Sculpture or is it Both? It is a faced and it might be a roof It has no windows in the faced plustur whan sized glusting He uses expensive cladding materials most of us cannot afford Titanium etc.

"Architecture should speak of its time and place, but yearn for timelessness." Frank Gehry, Architect

Today's Lecture

Building Envelope Principles 1.First Principles 2.Components & Checklist 3.Design Considerations 4.Performance Requirements 5.Lecture Summary First Principles What are buildings for? What is their purpose?

Week	Tuesday	Lacture	Arch/IDA Tech	Lecturer Time	Arch Design
Wk 9	24/09/19	Void	Induction	Induction	Induction - no class
Wk 10	01/10/19	Void	Void	Void	Arch Design 1 launch Site Visit
Wk 11	08/10/19	Lecture 01	Module Introduction Tech Task 1 TouchStone Launch Adopt a Material Fixings Fasteners Workshop Introduction Tutors: Brian Sonia Akx	Building Envelop Principlea/ Ledurer: Brien 3:30-4:30pm	Arch Design 1 Group Table top Site studies Tutorials - Work in studios
Wk 12	15/10/19	Lecture 02	Studio Tech Task 1 Adopt a Material Tech Tutor: Sonia	Introduction to Materiala/ Adopt a Material Lecture: Sonia Tong 3:30-4:30pm	Design 1 work in studio
Wk 13	22/10/19	Lecture 03	Studio Tech Task 1 Adopt a Material Tech Tutor: Alex	Sustainability Principles Lecturer: Alex Veal 200-3:00pm	Design 1 work in studio
Wk 14	29/10/19	Lecture 04	Tech Task 1 Submit Adopt a Material Tutora: Brian Sonia Alex	External Walts, Roof & Openings Doors Windows Ledurer: Brian 3:30-4:30pm	Design 1 Crit + Review with Client
Wk 15	05/11/19	Void	Void	Void	Arch Design 1 (Reflection) Submit Arch Design 2 launch Self assessment/updates
Wk 16	12/11/19		Tech Task 1 (Reflection) Submit	Independent study week No Lectures	Design 2 work off site
Wk 17	19/11/19	Lecture 05	Arch Tech 2 launch Material Application Tech Tutor: Sonia	Floors ceilings partitions Lecturer: Sonia 3:30-4:30pm	Design 2 work in studio
Wk 18	26/11/19	Lecture 06	Studio Tech Task 2 Material Application Tech Tutor: Brian	Passive Performance Noise Light Heat Vent Cool Services Response Lecturer: Brian 3:30-4:30pm	Design 2 work in studio
Wk 19	03/12/19	Lecture 07	Studio Tech Task 2 Material Application Tech Tutor: Alex	Building Structures /Furniture Strength & Stability Lecturer: Alex Veal 2:00-3:00pm	Design 2 work in studio
Wk 20	10/12/19	Lecture 08	Tech Task 2 Submit Material Application Tutors: Brian Sonia Alex	Existing Building Survey/ Historic Fabric Performance Lecturer: Sonia: 3:30-4:30pm	Design 2 work in studio
Wk 21	17/12/19	Void	Tech Task 2 (Reflection) Submit	Vaid	Arch Design 1+ 2 Crits with Guest + Self Assessment
Wk 22	24/12/19				Design 2 reflection
Wk 23	31/12/19				
Wk 24	07/01/20				
Wk 25	14/01/20	Lecture	Tech Task 3 launch Room	Future Systems Sustainability Lecture: Brian 3/304/30mm	Arch Design 2 (Reflection) Submit


First Principles What are buildings for? What is their purpose? 1.Shelter 2.Comfort 3.Security & Purpose A simple wall can become: -an object to lean against -a place to enjoy the sun during the day -protection from the elements; wind, sun, rain but not necessarily all at the same time -thermal mass (Stones) if warned by the sun will reradiate heat at night - A cloudless night will suck the heat away

First Principles		
 Shelter -basic shelter from the weather -separation from damp earth -basic storage (food & water) 	from weather -warmth and cooking	 Security & Purpose -full protection from weather -a 'home' for activities -security/ safety

Components	
Banham Group Headquarters, Thornsett Road, London Allies and Morrison	

Typical Building Checklist	
	4 Mechanical, Electrical and Plumbing (MEP)
	2 Building Frame (Structure)
	6 Furnishings
-	1 Foundations (Structure)

21/11/19

<section-header><text><text><text><text><text><text><text><text>

Floor Reactions

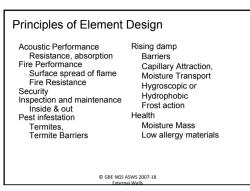
Gravity: Support

Wind: rigidly, resilience, sealing, air tightness layers and detailing Rain: deflection, impervious skin, absorption and drainage, sealing Snow: deflection, impervious skin, absorption and drainage, sealing Moisture vapour: resistance, hygroscopicity, permeability, breathing, moisture mass Sun: movement joints, insulation, shielding, invulnerable materials Dirt and Dust: repulsion, exclusion, shielding, cleaning Chemicals: invulnerable materials, exclusion, Sound: Insulation, absorption, accoustic mass, separation, isolation, Attack: toughness, lamination, edge restraint, edge protection Insulating: thermail insulation, thermal mass, U value, G value, cold bridge avoidance/minimisation Deposits: smooth impervious surface, flush impervious joints, Gases: Gas/Damp proof membrane linked to G/DPC Miethers Elevation of flor membrane linked to G/DPC

Moisture: Elevation of floor above flood plain, Separation, water resistant materials, Damp proof membranes linked to DPC

Principles of Element Design: Floors Appearance Thermal Performance Interior and exterior materials and Heat Resistance: loss and gain finishes Condensation Avoidance Structural strength and stability Airtightness Load-bearing Wind resistance Avoidance of Cold Bridges Thermal Mass Weather harrier Movement Rain, snow, wind, sun, Structural, thermal, moisture, Frost dirt dust pollution heave Chemical Durability Moisture resistance, frost, mould Moisture Mass & Hygroscopicity Ozone and sunlight degradation 1/11/19 © GBE 2007-16 Floors

Acoustic Performance Resistance, absorpt Fire Performance Surface spread of fit Fire Resistance Security Inspection and mainte Inside & out Pest infestation Termites, Termite Barriers	ion Barriers Capillary Attraction ame Hygroscopic or Hydrophobic Frost action Health	
21/11/19	© GBE 2007-16 Floors	1


Wall Actions

Gravity: downward pull Wind: Motive, Destructive, Penetrative Rain: Moisture deposition, penetration Snow: Moisture deposition, loading Moisture vapour: permeation, surface and interstitial condensation, insulation impaired, material degradation Sun: Temp variation, thermal movement, solar heat gains, Chemical decomposition Dirt and Dust: infiltration, deposition, surface pollution Chemicals: corrosion, disintegration, decomposition Sound: Noise nuisance, from within and from without Attack: Manual, Ballistics, Bomb Blast Thermal: heat loss, radiant coolth, condensation, stack effect

© GBE NGS ASWS 2007-18

Wall Reactions
Gravity: Support & restraint Wind: rigidity, resilience, sealing, air tightness layers and detailing Rain: deflection, impervious skin, absorption and drainage, sealing Moisture vapour: resistance, hygro-scopicity, permeability, 'breathing', moisture mass Snow: deflection, impervious skin, absorption and drainage, sealing Sun: movement joints, insulation, shielding, invulnerable materials, decrement delay Dirt and Dust: repulsion, exclusion, shielding, cleaning, covering Chemicals: invulnerable materials, exclusion, Sound: Insulation, absorption, acoustic mass, separation, isolation, Attack: toughness, lamination, edge restraint, edge protection Insulating: thermal insulation, k and U value, thermal mass, thermal bridge avoidance/minimisation, Glass: G value,
© GBE NGS ASWS 2007-18

Appearance Interior and exterior materials and finishes Structural strength and stability Load-bearing Wind resistance Weather barrier Rain, snow, wind, sun, dirt dust pollution Durability Moisture resistance, frost, mould Moisture Mass & Hygroscopicity Ozone and sunlight degradation	Principles of Element	Principles of Element Design			
External Walls	Interior and exterior materials and finishes Structural strength and stability Load-bearing Wind resistance Weather barrier Rain, snow, wind, sun, dirt dust pollution Durability Moisture resistance, frost, mould Moisture Mass & Hygroscopicity Ozone and sunlight degradation ● GBE NGS.	Heat Resistance: loss and gain Condensation Avoidance Airtightness Avoidance of Cold Bridges Thermal Mass Movement Structural, thermal, moisture, Frost Chemical			

Flat Roof Actio	ins	
Wind: Mot ballast and Rain: Mois Snow: Mo Sun: Tem gains, Che Dirt and D Chemicals	wwward pull ive, Destructive, Penetrative, Scour, concentration of d blow off roof sture deposition, penetration isture deposition, loading o variation, thermal movement, solar radiation heat emical decomposition ust: infiltration, deposition, surface pollution c corrosion, disintegration, decomposition pise nuisance, from within and from without flanking ent	
21/11/19	© GBE 2007-16 (27.1) Flat Roofs	2

	Flat Roof Reactions	
	Gravity: Support & restraint Wind: rigidity, resilience, sealing, wind and air tightness, bonding/ fastening/ballast, high upstands Rain: deflection, impervious skin, absorption and drainage, sealing Snow: retention, deflection, impervious skin, absorption and drainage, sealing Sun: reflection, albedo, thermal mass, decrement delay, movement joints, radiation, convection and conduction insulation, shielding, invulnerable materials Dirt and Dust: repulsion, exclusion, shielding, collection, cleaning, demineralisation Chemicals: invulnerable materials, exclusion, bio-remediation Sound: Insulation	
21,	(11/19 © GBE 2007-16 (27.1) Flat Roofs	27

	•	f Design
•	Roof form and types of weatherproof denoticits strength and etablity - two and -we pressure Weather shield Rain and other procipitation Broos: Weight, Insulation, reflection, Stippage, mit water run off Wind Wind driven rain, wind driven snow. - wind source fabliast, wind driven mets	Drainage: Durability Sound insulation Meintsnance Security Fine.
	water, Sun V radiation - Solar radiant Heat resistance - Internal conduction insulation - Overheating Dirt and duut	 Roof Access: Maintenance, cleaning Inspection, Safety Ventilation Rooflights
•	Thermal performance - Thermal movement - Heat Gain and resistance - Heat loss and retention - Condensation risk © GBE 2007-16 (27)	Insect exclusion or selective inclusion Bat and Bird exclusion or inclusion

Principles of Element Design		
Appearance Interior and exterior materia finishes Structural strength and stab Load-bearing Wind resistance Weather barrier Rain, snow, wind, sun, dirt dust polution Durability Moisture resistance, frost, rr Moisture Mass & Hygroscop Ozone and sunlight degrada	Condensation Avoidance Condensation Avoidance Avoidance of Thermal Bridges Thermal Mass Decrement Delay Movement Structural, thermal, moisture, Frost Creep rould Chemical	
21/11/19	© GBE 2007-16 (27.1) Flat Roofs	29

Principl	es of Element Design	
	Performance ince, absorption rmance	
Proxim Security Inspection Inside & Biodiversit Inhabita Health Moistur	ly ly	
21/11/19	© GBE 2007-16 (27.1) Flat Roofs	30

Pitched Roof Actions

Gravity: downward pull

Wind: Motive, Destructive, Penetrative, Scour, concentration of ballast and blow off roof Rain: Moisture deposition, penetration Snow: Moisture deposition, loading Sun: Temp variation, thermal movement, solar radiation heat gains, Chemical decomposition Dirt and Dust: infiltration, deposition, surface pollution Chemicals: corrosion, disintegration, decomposition Sound: Noise nuisance, from within and from without flanking from adjacent

Pitched Roof Reactions

Gravity: Support & restraint Wind: rigidity, resilience, sealing, wind and air tightness, bonding/ fastening/ballast, high upstands Rain: deflection, impervious skin, absorption and drainage, sealing Snow: reflection, deflection, impervious skin, absorption and drainage, sealing Sun: reflection, albedo, thermal mass, decrement delay, movement joints, radiation, convection and conduction insulation, shielding, invulnerable materials Dirt and Dust: repulsion, exclusion, shielding, collection, cleaning, demineralisation Chemicals: invulnerable materials, exclusion, bio-remediation Sound: Insulation

Principles of Roof Design

Roof form and types of weatherproof coverings Structural strength and stability +ve and -ve pressure Weather shield Rain and other precipitation Snow: Weight, Insulation, reflection, Slippage, melt water run off Wind Wind driven rain, wind driven snow, wind	Rain, snow mell water Pitch and materials Retention and Mitigation, SUDS Durability Sound Insulation External and internal, loading, safety Security Entry through tiles and battens USA Fire, External Fire Penetration Internal Fire Spread Roof Access: Natinetanace, cleaning, inspecti Ventilation Rooflights Privacy from overlooking Insect exclusion or selective inclusion Bat and Bird exclusion or inclusion
venico di reeli rati, venico di unteri si solov, venico socio di calasti, venico divene metti vester, Solar radiation Solar radianti Hear resistance Internal conduction insulation Overheatign Dirt and dust Thermal proformance Thermal rossiance Heat Gaian and resistance Heat Gaian and resistance Heat Gaian and resistance	

Design Considerations - Structure Definition: 1: The amagement of and Haldons between the Exprogram Productions from, formation, shape, Comparison of the software of the software of the software Production : 1: (rease nonz) Production: 1: (r

Principles of Element Design

Appearance Thermal Interior and exterior materials and finishes Structural strength and stability Structural strength and stability Wind reading and stability Weather barrier Deor Rain, snow, wind, sun, dir dus polution Struct Dur Burt Moisture re esistance, frost, mould Moisture Mass & Hygroscopicity Ozone and sunlight degradation

d Thermai Performance Thermai Performance Condensation Avoidance Aritightness Avoidance of Thermal Bridges Thermal Mass Movement Structural, thermal, moisture, Frost Creep d Chemical

Principles of Element Design Acoustic Performance Resistance, absorption Fire Performance Proximity to boundary Security Inspection and maintenance Inside & out Biodiversity Inhabitation Health Moisure Mass Low allergy materials

External Structure vs Architecture

Like a crustation (crab) Shell is on the outside Insitu concrete loadbearing walls and floors and roofs Infill walls and windows

Salk Institute, Californai, USA Louis Kahn

Internal Basement Sub-Structure vs Architecture Diaphragm basement walls reinforced with internal grid frame Held apart by steel props Heroic spaces Coordination with escalators and landings treaded between props

inster Tube Station, London Hopkins Arcl

Westn

Design Considerations – MEP What do we mean by WEP? 1. Mechanical services focus on: - Heating - Venitation - Cooling - Circulation (Lifts, Escalators) 2. Electrical services focus on: - Defining services focu

As aronnecs and menor arbitects, we are not normally qualified to design influences and the second s External MEP Strategy vs Architecture vs Structure Structure and Envelope create a Services Zone Services being outside need their own external envelop And there will be lots of services/envelop penetrations They need to perform as well as the envelop

Le Centre Pompidou, Paris, France Richard Rogers, Renzo Piano & Gianfranco Franchini

Internal MEP Strategy vs Architecture Service mostly behind the ceilings and linings Outlets, openings, pendulous parts exposed Partitions need lateral restraints above ceiling To resist internal wind pressure buffeting and people impacts and furniture/pictures hung on surfaces of partitions They need be coordinated to avoid clashes with services

Banham Headquarters, London Allies and Morrison

Performance Requirements: Interstitial Condensation

Apart from keeping a building warm, dry, secure, etc., the external envelope needs to perform in an inherently sound competent manner.

Typically in buildinge, When warm, moist air comes into contact with cooler surfaces that are at or below the dew point, water condenses on those surfaces.

> Every-material and system build-up has an inherent dew point where interstitial condensation will form. A typical diagram above shows the dew point at approx 5 degrees C (celcius). At this point, warm air vapour will turn to liquid.

A typical dew point table for a material/system

Performance Requirements: Heat & Moisture Condensation

Desktop studies can be carried out to calculate the point at which condensation will form within a given buildup under specific conditions.

The important variables include; -internal air temperature -external air temperature -relative air moisture content

BS 5250 is a Static Method - But buildings are subject to variable conditions: - night to day - summer to winter Use WUFI or Delphin - Hvorothermal moisture movement software

Red line is temperature, blue line is the dew point If they cross 'here be dragons'

Performance Requirements When interstitial or surfacce condensation happens within the building fabric and cannot dry out properly, mould will form. This is bad for the building fabric, but more importantly, bad for human health. Toxic mould kills and make building unusable without breathing apparatus

Interstitial (come to the surface) Surface imples of bad mould growth due to condensation

Performance Requirements: Thermal and Condensation Temperature and dew Where temperature and dew lines meet, lines never meet. condensation will occur therefore no condensation Inadequate thermal insulation thickness shown in all three: 200mm: Plastics or 300mm Stone fibre to meet Building Regulations Approved Document Part L Plus limiting thermal bridges and improving airtightness Rainwater penetration occurs. Rainwater penetration and Condensation can occur on Condensation can only occur in condensation can occur on inside of outer leaf and run this insulated cavity wall if the inside of outer leaf, run down down. warm air being pushed out from and into insulation to reduce Ventilated cavity can reduce the inside is of high relative its nerformance insulation performance. humidity and meets a cold Exterior insulating render or Exterior insulating render or enough surface to condense room/house ventilation helps in covity will help

External Envelope -Performance vs Architecture Building Integrated PV panels Zinc or Lead roofing Risk of overheating Large fixed Glazing without solar shading Risk of overheating and no passive cooling

Banham Headquarters, Londor Allies and Morrisor

External Envelope Preformance Checklist:
 Structure-frame, stability, movement, lateral restraint,
 Water-envelope: weather, precipitation, rain snow, wind blown rain, melting snow,
 Thermal – envelope: k vlaues, U value, psi values (thermal bridges) Decrement Delay
 Airtightness – envelope heat loss, colth gain, condenation risk, structural failures, ground gasses, radon, metane, air pollution,
 Acoustic -sound control, external inwards, internal outwards, penetration, tansmission, absorption, reperberation
 Fire -insulation and integrity, smoke and flaming droplets
7.Security - robustness, privacy, locking
 Maintenance - access, repair, maintain, replace, de-constructing, re-assembling
 Comfort – air temperature, surface temperature, ventilation, daylight, humidity, indoor air quality, VOCs CO2, etc.

Г

END OF LECTURE- KEEP WORKING ON YOUR DESIGN TASK "We shape our buildings: thereafter they shape us." Western Churchil, Forme British Prime Minister